
Case Study: Lethal Software Defects—Patriot Missile Failure | Michael Barr

experts.barrgroup.com | Copyright Barr Group. All rights reserved.

Case Study: Lethal Software Defects - Patriot Missile Failure

by Michael Barr

During the Gulf War, twenty-eight U.S. soldiers
were killed and almost one hundred others
were wounded when a nearby Patriot missile
defense system failed to properly track a Scud
missile launched from Iraq. The cause of the
failure was later found to be a programming
error in the computer embedded in the Patriot’s
weapons control system.

On February 25, 1991, Iraq successfully launched a
Scud missile that hit a U.S. Army barracks near
Dhahran, Saudi Arabia. The 28 deaths by that one
Scud constituted the single deadliest incident of the
war for American soldiers. Interestingly, the
“Dhahran Scud”, which killed more people than all 70
or so of the earlier Scud launches, was apparently the
last Scud fired in the Gulf War.

Unfortunately, the “Dhahran Scud” succeeded where
the other Scuds failed because of a defect in the
software embedded in the Patriot missile defense
system. This same bug was latent in all other Patriots
deployed in the region. However, the bug was
masked by this fact--a particular Patriot weapons
control computer had to continuously run for several
days before the bug could be revealed and result in
the hazardous condition of failing to track a Scud.

The official post-failure analysis report by the U.S.
General Accounting Office (GAO IMTEC-92-26)
entitled “Patriot Missile Defense: Software Problem
Led to System Failure at Dhahran, Saudi Arabia"
provides a nice concise write-up of the problem.
Included in this report is prefatory background on
how the Patriot system is designed to work.

The hindsight explanation of this tragedy consists of
the following:

a software problem “led to an inaccurate tracking
calculation that became worse the longer the
system operated” and states that “at the time of
the incident, the [Patriot] had been operating
continuously for over 100 hours” by which time
“the inaccuracy was serious enough to cause the
system to look in the wrong place [in the radar
data] for the incoming Scud

What Went Wrong?

The GAO report does not go into the technical details
of the specific programming error. However, the
following can be inferred based on the information
and data provided about both the incident and
defect.

The Code

1. The CPU was a 24-bit integer-only CPU “based on
a 1970s design”. Befitting the time, the code was
written in assembly language.

2. Real numbers (i.e., those with fractions) were
apparently manipulated as a whole number in
binary in one 24-bit register plus a binary fraction
in a second 24-bit register. In this fixed-point
numerical system, the real number 3.25 would
be represented as binary
000000000000000000000011:01000000000000
0000000000, in which the : is the marker for
the separator between the whole and fractional
portions of the real number. The first half of that
binary represents the whole number 3 (i.e., bits
are set for 2 and 1, the sum of which is 3). The

Case Study: Lethal Software Defects—Patriot Missile Failure | Michael Barr

experts.barrgroup.com | Copyright Barr Group. All rights reserved.

second portion represents the fraction 0.25 (i.e.,
0/2 + 1/4 + 0/8 + …).

3. System [up]time was “kept continuously by the
system’s internal clock in tenths of seconds []
expressed as an integer.” This is important
because the fraction 1/10 cannot be perfectly
represented in 24-bits of binary fraction because
its binary expansion, as a series of 1 or 0 over 2^n
bits, does not terminate.

The Algorithm

The missile-interception algorithm that did not work
that day is understood to be approximately the
following:

1. Consider each object that might be a Scud missile
in the 3-D radar sweep data.

2. For each, calculate an expected next location at
the known speed of a Scud (+/- an acceptable
window).

3. Check the radar sweep data again at a future
time to see if the object is in the location a Scud
would be.

4. If it is a Scud, engage and fire missiles.

The GAO reports that the problem was an
accumulating linear error of .003433 seconds per 1
hour of uptime that affected every deployed Patriot
equally. This was not a clock-specific or system-
specific issue.

The Tragic Result

Given all of the above, it can be reasoned that the
problem was that one part of the Scud-interception
calculations utilized time in its decimal representation
and another used the fixed-point binary
representation. When the uptime was still low,
targets were found in the expected locations when
they were supposed to be and the latent software bug
was hidden.

Of course, all of the above detail is specific to the
Patriot hardware and software design that was in use
at the time of the Gulf War. As the Patriot system has
since been modernized by Raytheon, many details
like these will have likely changed.

According to the GAO report:

Army officials believed the Israeli experience was
atypical [and that] other Patriot users were not
running their systems for 8 or more hours at a
time. However, after analyzing the Israeli data
and confirming some loss in targeting accuracy,
the officials made a software change which
compensated for the inaccurate time calculation.
This change allowed for extended run times and
was included in the modified software version
that was released [9 days before the Dhahran
Scud incident]. However, Army officials did not
use the Israeli data to determine how long the
Patriot could operate before the inaccurate time
calculation would render the system ineffective.

Four days before the deadly Scud attack, the “Patriot
Project Office [in Huntsville, Alabama] sent a message
to Patriot users stating that very long run times could
cause [targeting problems].” That was about the time
of the last reboot of the Patriot missile that failed.

Note that if time samples were all in the decimal
timebase or all in the binary timebase then the two
compared radar samples would always be close in
time and the error would not accumulate with
uptime. And that is the likely fix that was
implemented.

Firmware Updates

Here are a few tangentially interesting tidbits from
the GAO report:

• “During the [Gulf War] the Patriot’s software
was modified six times.”

• “Patriots had to be shut down for at least 1
to 2 hours to install each software
modification.”

• “Rebooting[] takes about 60 to 90 seconds”
and sets the “time back to zero.”

• The “[updated] software, which
compensated for the inaccurate time
calculation, arrived in Dhahran” the day
after the deadly attack.

Case Study: Lethal Software Defects—Patriot Missile Failure | Michael Barr

experts.barrgroup.com | Copyright Barr Group. All rights reserved.

Public Statements

In hindsight, there are some noteworthy quotes from
the 1991 news articles initially reporting on this
incident. For example,

Brig. Gen. Neal, United States Command (2 days
after):

The Scud apparently fragmented above the
atmosphere, then tumbled downward. Its
warhead blasted an eight-foot-wide crater into
the center of the building, which is three miles
from a major United States air base … Our
investigation looks like this missile broke apart in
flight. On this particular missile it wasn’t in the
parameters of where it could be attacked.

U.S. Army Col. Garnett, Patriot Program Director (4
months after):

The incident was an anomaly that never showed
up in thousands of hours of testing and involved
an unforeseen combination of dozens of variables
— including the Scud’s speed, altitude and
trajectory.

Importantly, the GAO report states that, a few weeks
before the Dharan Scud, Israeli soldiers reported to
the U.S. Army that their Patriot had a noticeable “loss
in accuracy after … 8 consecutive hours.” Thus,
apparently, all of this “thousands of hours” of testing
involved frequent reboots. The GAO reported that
“an endurance test has [since] been conducted to
ensure that extended run times do not cause other
system difficulties.”

Note too that the quoted “thousands of hours of
testing” was also misleading. The Patriot software
was, also according to the GAO report, hurriedly
modified in the months leading up to the Gulf War to
track Scud missiles going about 2.5 times faster than
the aircraft and cruise missiles it was originally
designed to intercept. Improvements to the Scud-
specific tracking/engagement algorithms were
apparently even being made during the Gulf War.

The Need for Source Code Reviews

Once the source code was examined, these specific
theories and statements about what went wrong or
why it must have been a problem outside the Patriot
itself were fully discredited. When computer systems
may have misbehaved in a lethal manner, it is
important to remember that newspaper quotes from
those on the side of the designers are not scientific
evidence. Indeed, the humans who offer those quotes
often have conscious and/or subconscious motives
and blind spots that favor them to be falsely
overconfident in the computer systems. A thorough
source code review takes time but is the scientific way
to go about finding the root cause.

As a New York Times editorial dated 4 months after
the incident explained:

The Pentagon initially explained that Patriot
batteries had withheld their fire in the belief that
Dhahran’s deadly Scud had broken up in
midflight. Only now does the truth about the
tragedy begin to emerge: A computer software
glitch shut down the Patriot’s radar system,
blinding Dhahran’s anti-missile batteries. It’s not
clear why, even after Army investigators had
reached this conclusion, the Pentagon
perpetuated its fiction

At least in this case, it was only a few months before
the U.S. Army admitted the truth about what
happened to themselves and to the public. That is to
the U.S. Army’s credit. Other actors in other lethal
software defect cases have been far more stubborn
to admit what has later become clear about their
systems.

Barr Group provides testifying expert witnesses and software source code analysis teams to support complex
litigation, including litigation involving product liability and infringement of intellectual property such as patents
and software copyrights. CONTACT US

