
Embedded Linux and Copyright Law | Michael Barr

experts.barrgroup.com | Copyright Barr Group. All rights reserved.

Embedded Linux and Copyright Law

By Michael Barr

This article was updated November 27, 2018.

The rising popularity of Linux has spurred many
embedded developers to consider it as an RTOS
alternative. Here are just some of the legal
implications for the proprietary parts of firmware
with which developers should be familiar.

One of the more confusing aspects of the open source
phenomenon is the proliferation of different source
code licensing schemes. Indeed, if multiple pieces of
software developed by others are to be used in a
product, it’s best to have an intellectual property
lawyer read the license agreement for each
component and advise on how best to proceed.

Fortunately, if only Linux is being used (as assumed
for the rest of this article), the situation is much more
straightforward.

What is Copyleft?

Copyleft is the free distribution of software or
artistic work with the requirement that all modified
or derived work also be made available for free.

A common myth is that the use of any piece of open
source code, including Linux, requires the user to give
away the source code to their own proprietary
application. In truth, most open source licenses
protect only the borrowed code and do not place any
restrictions on other software you might develop for
use alongside it.

Licensing and the Linux Kernel

The specific license accompanying the Linux kernel is
called the GNU General Public License (GPL). The GPL
defines rules that apply when leveraging software
that would not have been otherwise accessible if the
code were proprietary. Under these rules, anyone is
entitled to improve or modify the Linux kernel and its
device drivers, applications, and services. But because

these modifications create a derivative of the existing
code, they must be made public under the same
licensing terms.

If the operating system is not modified, the GPL
requires only that credit be given where credit is due,
any further licensing or distribution conditions are
not imposed upon customers, and that the Linux
source code used be provided to customers if
requested.

Integrating the Linux Kernel in Proprietary
Software

There are many situations in which an engineering
organization might want to keep its own code
proprietary even when that code is surrounded by
Linux's open source code. This can usually be
accomplished by following three rules of thumb
during development:

1. Start proprietary software development with a
copyleft-clean code base.

By ensuring that proprietary code does not build
directly upon any open source code, developers can
remain clear of the "derivative work" clause found in
the GPL. Derivative works are the source of most legal
confusion; they must typically be made open source
under the same terms as the original code from which
they are derived. But proprietary code that merely
interfaces to open-source code is not derivative.

2. Don’t rely on open-source libraries unless they
are under LGPL license.

The GPL requires any code that links to a GPL library-
-statically or dynamically--to also be released under
the GPL. However, a less protective license called the
GNU Lesser General Public License (LGPL) was created
so that developers could link to these open source
libraries in either way without being bound to release

Embedded Linux and Copyright Law | Michael Barr

experts.barrgroup.com | Copyright Barr Group. All rights reserved.

their application's source code. Most key Linux
libraries are licensed under the LGPL.

3. Never modify the standard interfaces to the
Linux kernel.

Under the GPL terms, any modification made to the
monolithic portion of the Linux kernel must be
released as open source software. Note, however,
that when an application requires changes be made
to the kernel, only those kernel changes must be

made public. The application code (and even loadable
kernel modules) can still be kept proprietary,
provided that they simply interface with the kernel
via Linux's standard system calls.

If the three simple rules above are observed,
developers and software experts should be able to
distinguish between Linux and your proprietary code
for all intents and legal purposes. Of course, it is
always prudent to talk with an intellectual property
lawyer.

Barr Group provides testifying expert witnesses and software source code analysis teams to support complex
litigation, including litigation involving product liability and infringement of intellectual property such as patents
and software copyrights. CONTACT US

